A Novel Smiley Fractal Antenna (SFA) Design and Development for UWB Wireless Applications

نویسندگان

  • Mohandoss Susila
  • T. Rama Rao
  • Aman Gupta
چکیده

Ultra Wideband (UWB) has been deliberated as a promising technology for short-range wireless communication with large unlicensed frequency band for commercial, enterprise private and public uses. Designing an antenna of compact size for portable wireless devices is one of the challenges especially for UWB based wireless communication technologies. In this paper, a novel Smiley Fractal Antenna (SFA), employed with N-notch feed and modified ground plane, is designed and developed to achieve the desired characteristics. The proposed antenna is of compact size with dimensions of 34×32×1.6mm3, fabricated on an FR-4 substrate with εr = 4.4. The radiation pattern of the proposed antenna is omnidirectional with a maximum gain of 4.83 dB and efficiency of 93.55% obtained through 3D electromagnetic simulation software tools. The simulated results are compared with measured ones using RF equipment. The results obtained show that the proposed SFA is a suitable candidate for variety of UWB wireless communication applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Miniaturization of a Novel Fractal Microstrip Antenna for UWB Applications

A novel printed octagonal fractal microstrip antenna with semi-elliptical ground plane is presented for ultra wide band applications. The proposed antenna has a compact size of 20×20×1 mm³. The measured result of the antenna exhibits the ultra wide band characteristics from 2/9 to 14/2 GHz. In this paper, reducing antenna’s size by 35%, the same results were achieved, while small dimension frac...

متن کامل

A Novel Small E–Ring Shaped Monopole Antenna with Dual Band-Notch Function for UWB Wireless Communications

This paper presents an E-ring shaped printed monopole antenna for UWB applications with dual notched bands performance. In order to generate single frequency band notch function, we applied a U-ring shaped monopole antenna, and by inserting a rectangular ring in the centre of it an E-ring shaped radiating patch created and a dual band-notch function can be achieved. The measured bandwidth of th...

متن کامل

Multi Attribute Analysis of a Novel Compact UWB Antenna with Via-fed Elements for Dual Band Notch Function (RESEARCH NOTE)

A compact microstrip-fed antenna with dual notched bands is proposed. First, a simple basic configuration is presented for Ultra Wide Band (UWB) applications and then the dual band notched structure is extended from the UWB one. The basic structure of the UWB antenna consists of a simple square radiating patch and a ground plane with a wide square slot on back of the substrate. A semi-circle sh...

متن کامل

A Novel Compact Ultra-Wideband Antenna with Single and Double Band Rejection

Band-notch characteristic has been of great interest recently to overcome the electromagnetic interference of Ultra-wideband systems (UWB) with other existing ones. In this paper, we present a novel microstrip-fed antenna with band rejection property appropriate for UWB applications. Band-notch characteristic has been achieved by adding a rectangular resonant element to the ground section. A pr...

متن کامل

Compact CPW-fed Circular Patch Antenna for UWB Applications

In this paper, a novel CPW-fed antenna is presented for UWB applications. The antenna mainly comprises of a simple circular patch and a modified ground plane. The inclusion of two novel symmetrical rectangular slots with inner area of 3×2.8 mm2 to the top corners of the antenna creates a new path for the current and consequently leads to the bandwidth enhancement. A rectangular stub is also ado...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014